Descending corticospinal control of intersegmental dynamics.

نویسندگان

  • Valeriya Gritsenko
  • John F Kalaska
  • Paul Cisek
چکیده

To make an accurate movement, the CNS has to overcome the inherent complexities of the multijoint limb. For example, interaction torques arise when motion of individual arm segments propagates to adjacent segments causing their movement without any muscle contractions. Since these passive joint torques significantly add to the overall torques generated by active muscular contractions, they must be taken into account during planning or execution of goal-directed movements. We investigated the role of the corticospinal tract in compensating for the interaction torques during arm movements in humans. Twelve subjects reached to visual targets with their arm supported by a robotic exoskeleton. Reaching to one target was accompanied by interaction torques that assisted the movement, while reaching to the other target was accompanied by interaction torques that resisted the movement. Corticospinal excitability was assessed at different times during movement using single-pulse transcranial magnetic stimulation (TMS) over the upper-arm region of M1 (primary motor cortex). We found that TMS responses in shoulder monoarticular and elbow-shoulder biarticular muscles changed together with the interaction torques during movements in which the interaction torques were resistive. In contrast, TMS responses did not correlate with assistive interaction torques or with co-contraction. This suggests that the descending motor command includes compensation for passive limb dynamics. Furthermore, our results suggest that compensation for interaction torques involves the biarticular muscles, which span both shoulder and elbow joints and are in a biomechanically advantageous position to provide such compensation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal circuits can accommodate interaction torques during multijoint limb movements

The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to cen...

متن کامل

Keeping it together: mechanisms of intersegmental coordination for a flexible locomotor behavior.

The coordination of multiple neural oscillators is key for the generation of productive locomotor movements. In the medicinal leech, we determined that activation and coordination of the segmental crawl oscillators, or unit burst generators, are dependent on signals descending from the cephalic ganglion. In nearly intact animals, removing descending input (reversibly with a sucrose block) preve...

متن کامل

Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome.

BACKGROUND AND PURPOSE Neonatal arterial ischemic stroke occurs in > or =1:4000 births. Many children experience motor deficits but acute predictors of outcome are lacking. Diffusion-weighted MRI changes in descending corticospinal tracts remote from arterial ischemic stroke may represent pre-Wallerian degeneration. We verify and quantify this signal and correlate it with motor outcome. METHO...

متن کامل

Functional analyses of the leech swim oscillator.

The oscillations that underlie swimming movements in the leech arise from a series of identified concatenated circuits within the ventral nerve cord. In the intact nerve cord, ascending and descending intersegmental interactions via axons within the lateral connectives function both to generate robust oscillations throughout the cord and to establish an anterior-to-posterior phase delay among s...

متن کامل

Convergence of Pyramidal and Medial Brain Stem Descending Pathways Onto Macaque Cervical Spinal Interneurons

We investigated the control of spinal interneurons by corticospinal and medial brain stem descending tracts in two macaque monkeys. Stimulating electrodes were implanted in the left pyramidal tract (PT), and the right medial longitudinal fasciculus (MLF), which contains reticulospinal, vestibulospinal, and some tectospinal fibers. Single unit discharge was recorded from 163 interneurons in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 33  شماره 

صفحات  -

تاریخ انتشار 2011